Math Virtual Learning

 Grade 8
Geometric Transformations: Translations

April 14, 2020

Math 8
 Lesson: April 14, 2020

Objective/Learning Target:

I can describe the effect of translations of two-dimensional figures using coordinates.

Warm Up

(\leftarrow) Translations can be seen in nature. The hexagonal sections of a honeycomb are the same size, the same shape and face in the same direction.
(\rightarrow) As you go down a slide, you are undergoing a translation. You are moving a given distance in a given direction. You do not change your size, shape or the direction in which you are facing (hopefully!).

Can you come up with a real-world example? Where have you seen translations in your life? Can you find one right now around you?

Warm Up continued

Some more real life examples of translations are:

- the movement of an aircraft as it moves across the sky
- the lever action of a sink tap (faucet)
- sewing with a sewing machine
- punching decorative studs into belts
- throwing a shot-put

Reminder: Translations are SLIDES!!

A translation moves ("slides") an object a fixed distance in a given direction without changing its size or shape, and without turning it or flipping it.

- The original object is called the pre-image, and the translation is called the image.
- The image is usually labeled using a prime symbol, such as $A^{\prime} B^{\prime} C^{\prime}$.
- Translations may be described by their movement, such as 5 units to the right and 2 units down.

- An object and its translation have the same shape and size, and face in the same direction.
- In Latin, the word "translate" means "carried across".

Which of these would correctly show a translation of the image?

1. Original Figure

2. Original Figure

B

D

Example 1: Find the coordinates of the point $(3,-5)$ after a translation 4 units to the right and 2 units down

Think about it....

- Moving a point 4 units right would be positive 4 units on the x-axis.
- Moving a point 2 units down would be moving negative 2 on the y-axis
(3-5)
Original Point
$(3+4,-5-2)$ Add 4 to x value and subtract 2 from y value
$=(7,-7) \longleftarrow$ New Point

Try these: On a separate sheet of paper, find the coordinates of each point after a translation of 4 units left and 3 units up. Answers on the next page.
A. $(0,5)$
B. $(-2,-3)$
C. $(4,-1)$

Solution:

Try these: On a separate sheet of paper, find the coordinates of each point after a translation of 4 units left and 3 units up. (Notice this would be -4 on the x-coordinate and +3 on the y-coordinate)
A. $(0,5)$
$(0,5) \quad$ Original point
($0-4,5+3$)
$=(-4,8)$ Solution
B. $(-2,-3)$
$(-2,-3) \quad$ Original point
$(-2-4,-3+3)$
$=(-6,0)$ Solution
$(4,-1) \quad$ Original point
(4-4, -1 +3)
$=(0,2)$ Solution

Example 2: Find the coordinates of the point $(-3,-4)$ after a translation using the rule $(x+2, y+6)$. \leftarrow That's Translation Notation

1. Use the rule: $(x, y) \rightarrow(x+a, y+b) \quad$ For this example: $(x, y) \rightarrow(x+2, y+6)$
2. Plug in the x and y values to find the translated point.
$(-3,-4)$
$x=-3$
$y=-4$
$(-3+2,-4+6)$
3. Use the given operations to find the next point.

$$
(-3+2,-4+6)
$$

$$
(-1,2)
$$

Try these: On a separate sheet of paper, find the coordinates of each point after a translation of $(x, y) \rightarrow(x-3, y+5)$. Answers on the next page.
A. $(8,6)$
B. $(-5,3)$
C. $(7,-2)$

Solution:

On a separate sheet of paper, find the coordinates of each point after a translation of $(x, y) \rightarrow(x-3, y+5)$.

A. $(8,6)$	B. $(-5,3)$	C. $(7,-2)$
$(8,6)$ Original point $\begin{aligned} & (8-3,6+5) \\ & =(5,11) \text { Solution } \end{aligned}$	$(-5,3) \quad$ Original point $(-5-3,3+5)$ $=(-8,8)$ Solution	(7, -2) Original point $(7-3,-2+5)$ $=(4,3) \text { Solution }$

Practice

Find the coordinates of the points of each figure after the given translation.

1) translation: 7 units right and 7 units down $E(-2,3)$
2) translation: 2 units left $W(-1,1)$
3) translation: $(x, y) \rightarrow(x-1, y-3)$
4) translation: $(x, y) \rightarrow(x, y+5)$ $U(5,0)$

Write a rule to describe each translation. Use words for \#5-6, and translation notation for \#7-8.
5) $D(-5,1)$ to $D^{\prime}(-1,-5)$
6) $S(2,4)$ to $S^{\prime}(0,-4)$
7) $G(-2,0)$ to $G^{\prime}(-4,0)$
8) $U(-1,5)$ to $U^{\prime}(5,4)$

Challenge: Find or write the coordinates of the points of each figure after the given translation.
9) translation: $(x, y) \rightarrow(x-1, y+2)$
$E(-3,-3), F(-2,1), G(-1,-4)$
10) $C(-3,-3), D(-3,1), E(1,0)$
$C^{\prime}(1,1), D^{\prime}(1,5), E^{\prime}(5,4)$

Practice Answer Key

Find the coordinates of the points of each figure after the given translation.

1) translation: 7 units right and 7 units down

$$
\begin{aligned}
& E(-2,3) \\
& E^{\prime}(5,-4)
\end{aligned}
$$

3) translation: $(x, y) \rightarrow(x-1, y-3)$

$$
\begin{aligned}
& G(-1,4) \\
& \quad G^{\prime}(-2,1)
\end{aligned}
$$

2) translation: 2 units left $W(-1,1)$

$$
W^{\prime}(-3,1)
$$

4) translation: $(x, y) \rightarrow(x, y+5)$

$$
\begin{aligned}
& U(5,0) \\
& U^{\prime}(5,5)
\end{aligned}
$$

Write a rule to describe each translation. Use words for \#5-6, and translation notation for \#7-8.
5) $D(-5,1)$ to $D^{\prime}(-1,-5)$
translation: 4 units right and 6 units down
7) $G(-2,0)$ to $G^{\prime}(-4,0)$
translation: $(x, y) \rightarrow(x-2, y)$

Challenge: Find or write the coordinates of the points of each figure after the given translation.
9) translation: $(x, y) \rightarrow(x-1, y+2)$

$$
\begin{aligned}
& E(-3,-3), F(-2,1), G(-1,-4) \\
& E^{\prime}(-4,-1), F^{\prime}(-3,3), G^{\prime}(-2,-2)
\end{aligned}
$$

$$
\begin{aligned}
& C^{\prime}(1,1), D^{\prime}(1,5), E^{\prime}(5,4) \\
& \text { translation: }(x, y) \rightarrow(x+4, y+4)
\end{aligned}
$$

Additional Resources:

Translations Lesson and Additional Practice

Translate Points

